Happy 2004
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 1346 Accepted Submission(s): 977 Consider a positive integer X,and let S be the sum of all positive integer divisors of 2004^X. Your job is to determine S modulo 29 (the rest of the division of S by 29). Take X = 1 for an example. The positive integer divisors of 2004^1 are 1, 2, 3, 4, 6, 12, 167, 334, 501, 668, 1002 and 2004. Therefore S = 4704 and S modulo 29 is equal to 6. The input consists of several test cases. Each test case contains a line with the integer X (1 <= X <= 10000000). A test case of X = 0 indicates the end of input, and should not be processed. For each test case, in a separate line, please output the result of S modulo 29. 若 n 的标准素因子分解表达式为 n = p1^e1 * p2^e2 * …… * pk^ek f(n) = (p1^(e1+1)-1)/(p1-1) * (p2^(e2+1)-1)/(p2-1) * ... * (pk^(ek+1)-1)/(pk-1) 因为2004 = 2^2 * 3 * 167,所以2004^x也肯定是2^(2*x) * 3^x * 167^x; 167 Mod 29 == 22 所以直接用22就行 ((2^(2*x+1)-1)/(2-1) * (3^(x+1)-1)/(3-1) * (22^(x+1)-1)/(22-1)) Mod 29 我们只要分别求出 a Mod 29, b Mod 29, c Mod 29的值就行啦,因为他们带着除数所以 我们进行求解逆元,分别是 1Mod29的逆元 2Mod29的逆元 21Mod29的逆元,这个可以根据扩展欧几里得算法得到,求出之后,我们就进行快速幂 分别求出2^(2x+1)Mod 29 , 3^(x+1)Mod 29, 22^(x+1)Mod 29 的值,然后减一 与 前面所求的逆元进行相乘就ok了 最后输出的就是 a*b*c Mod 29,下面是详细代码: #include using namespace std;typedef long long LL;LL quick_mod(LL a, LL b, LL m){ LL ans = 1; while(b) { if(b & 1) ans = (ans*a)%m; b>>=1; a = (a*a)%m; } return ans;}void exgcd(LL a, LL b, LL &x, LL &y){ if(b == 0) { x = 1; y = 0; return; } LL x1, y1; exgcd(b, a%b, x1, y1); x = y1; y = x1 - (a/b)*y1;}int main(){ LL n, a, b, c, y, _a, _b, _c; while(cin>>n,n) { exgcd(1,29,_a,y); exgcd(2,29,_b,y); exgcd(21,29,_c,y); _a = (_a+29)%29; _b = (_b+29)%29; _c = (_c+29)%29; ///cout<<167%29<